Expérience n°1 : Mise en évidence des forces aérodynamiques

Objectif : mettre en évidence les forces qui s'exercent sur un objet en mouvement dans l'air (ou les forces créées par l'air en mouvement autour d'un objet).

Description de l'expérience (schémas et commentaires) :

Nous allons réaliser 2 expériences permettant de mettre en évidence les forces aérodynamiques exercées par de l'air en mouvement autour d'un objet :

Un expérimentateur souffle sur le dessous puis le dessus d'une feuille de papier dont une largeur est maintenue horizontale et le reste pend sous l'effet de son poids. Il souffle ensuite entre 2 feuilles maintenues verticalement et dont les bords sont écartés.

Dans le deuxième expérience, une bouler en polystyrène est placée dans le flux d'air vertical en sortie d'une soufflerie. Le flux est ensuite incliné progressivement.

Observations :

Analyse et conclusions :

(quelles sont les caractéristiques de la ou des forces créées ? Quels sont les facteurs qui ont une influence sur ces forces?)

Expérience n°2 : Influence de la forme sur la portance

Objectif : étudier l'influence de la forme d'un profil d'aile sur la portance.

Caractéristiques d'un profil d'aile :

Reportez-vous à l'activité 2 et légendez le schéma ci-dessous.

Description de l'expérience (schémas et commentaires) :

Différents profils, de même corde et de même longueur de bord d'attaque, sont placés en soufflerie. La vitesse du flux d'air est réglée sur la même valeur pour chacun d'entre eux.

Profil		
Portance		

Observations :

Expérience n°3 : Influence de la vitesse sur la portance

Objectif : étudier l'influence de la vitesse sur la portance.

Description de l'expérience (schémas et commentaires) :

Un profil d'aile est placé dans la soufflerie. La vitesse est réglée à différentes valeurs successives et la portance du profil est mesurée pour chacune d'elles.

Vitesse			
Portance			

Observations :

Analyse et conclusions :

Expérience n°4 : Influence de la surface sur la portance

<u>Objectif</u> : étudier l'influence de la surface de l'aile sur la portance.

Description de l'expérience (schémas et commentaires) :

Différents sections d'ailes, de même prot et de même corde, mais de longueur de bord d'attaque (donc de surface) différentes sont	fil
placées dans la soufflerie à une même vitesse fixée. La portance est relevée pour chaque section.	

Section		
Portance		

Observations :

<u>Analyse et conclusions :</u>

EXPRESSION DE LA PORTANCE :

Expérience n°5 : Influence de la forme sur la traînée

Objectif : étudier l'influence de la forme sur la traînée.

Description de l'expérience (schémas et commentaires) :sont placée dans la soufflerie

Différentes formes possédant toutes la même surface frontale (maître couple) sont placées dans la soufflerie qui est réglée sur une même vitesse choisie. La traînée est mesurée pour chacune d'entre elles.

Observations :

Expérience n°6 : Influence de la vitesse sur la traînée

Objectif : étudier l'influence de la vitesse sur la traînée.

Description de l'expérience (schémas et commentaires) :

Un profil d'aile est placé dans la soufflerie. La vitesse est réglée à différentes valeurs successives et la traînée du profil est mesurée pour chacune d'elles.

Vitesse			
Traînée			

Observations :

Analyse et conclusions :

Expérience n°7 : Influence de la surface sur la traînée

Objectif : étudier l'influence de la surface de l'aile sur la traînée.

Description de l'expérience (schémas et commentaires) :

Différents sections d'ailes, de même prof et de même corde, mais de longueur de bord d'attaque (donc de surface) différentes sont placées dans la soufflerie à une même vitesse fixée. La portance est relevée pour chaque	fil
fixée. La portance est relevée pour chaque section.	

Section		
Portance		

Observations :

<u>Analyse et conclusions :</u>

EXPRESSION DE LA TRAINEE :

$$R_x = \frac{1}{2} \times \rho \times S \times v^2 \times C_x$$

Conclusion sur les forces aérodynamiques :

<u>Activité 01 : Les angles et les axes de la mécanique du vol</u>

Fiches_Experiences_Activites_AAPV-2015-V02

Expérience n°8 : Influence de l'incidence sur la portance et la traînée

Objectif : étudier l'influence de l'incidence sur la portance et la traînée.

Description de l'expérience (schémas et commentaires) :

Un profil d'aile est soumis à un écoulement à vitesse constante. Son incidence est modifiée pour prendre différentes valeurs et la norme de la portance et de la traînée est notée pour chaque valeur d'incidence :

Incidence (°)	-5	0	5	10	15
Portance					
Traînée					

Observations :

Activité 02 : Descritption d'un profil d'aile Cherchez la traduction des éléments présenté sur les schémas ci-dessous

<u>Utiliser Java Foil pour étudier un profil:</u>

- Lancer le logiciel:
 - cliquez sur l'icône du logiciel

• Paramétrer un profil : onglet Géométrie

Nom:	NACA 5412				Créer un pro	fil:	
Coordonnées:	1,00000000	0,00000000	-	Famille:	NACA 4-chif	fres (par ex. 2412)	,
Effacer	0,98952317	0,00332086	=	Nombre de points:	61	[-]	
no. de décimales:	0,95786824	0,01283793		Épaisseur t/c:	12	▲ ▼ [%]	
8	0,93451926	0,01955524		Position épaisseur maximum xt/c:	30	[%]	
	0,87390498	0,03583458 0,04489263		Cambrure f/c:	5	▲ ▼ [%]	
	0,79681898	0,05420641 0,06350492		Position cambrure xf/c:	40	▲ ▼ [%]	
	0,70641737	0,07252209		and the second second	0	N [%]	
	0,60651860	0,08870355		Modifier le profil NACA pour ferm	ner le bord de fu	ite	
	0,44847724	0,10504397	-	Familie de profils a usage general			
		Þ			Créer un	n profil	
				Forme du profil			
	s-s-	- 000	•	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
	8-8-					a a a a	
هر							
e e e				<u></u>			
a a a a a a a a a a a a a a a a a a a	· • -•-•	_ 	~		.		
800°	- 0-0-0-0 0	_ 000	- 0 -				
8000 A		_ 088	-@-				

- paramétrez comme décrit dans la fiche d'activité
- cliquez sur « Créer un profil »
- Observer le profil des vitesses sur les faces du profil : Vitesses

Observez les répartitions de vitesse sur l'intrados et l'extrados des profils. Notez comment ils évoluent avec l'incidence, la différence d'allure entre les différents types de profils et la différence d'évolution.

N'oubliez pas de cliquer sur « Analyser » pour actualiser les calculs.

• Observer l'écoulement d'air autour du profil : Écoulement

Ecoulement										
Angle d'attaque:	2	•		α	Re	Mach	Α	Cz	Сх	Cm 0.25
Grille en X:	60	Étendue de l'écoulement:	50%	្រោ	[-]	[-]	[-]	- [-]	[-]	[-]
0-11 14	20	Courterer Consideration		2,000	100000	0,000	80	0,874	0,01499	-0,126
Grille en Y:	30	Couleur Spectrum:	1 🔻							
· · · · · · · · · · · · · · · · · · ·			Ecoulomont							
			coulement			_				
							_			
								_		
								_		
	Drine de laine	E alaine an anulaur. E Lie		Ed Eline all	air. 🗖 Dula	4 . E práz				

Après avoir cliqué sur « Analyser ! », cette fenêtre vous permet de visualiser l'écoulement de l'ai autour du profil. Il est possible de modifier l'angle d'incidence.

• Observer la polaire et déterminer le Cz et l'incidence maximum : Polaire

- $\circ~$ Ajustez l'incidence maximale à 15° et notez la fomre de la polaire.
- Repérez l'incidence de décrochage et le Cz correspondant.
- Modifier un profil pour ajouter des volets : Modifications

JavaFoil	1				i i	-	
/ Géor	netrie Modificat	ions	Design / Vite:	sses /	Ecoulement	Couche	e Limite / Polaires / Avion / Options /
Modification du profil							
Nom:	NACA 0009		Épaisseur b. c	le fuite	0	[%]	Elément
Nombre de points	61	[-]		Pivot x:	25	[%]	1
Épaisseur t/c:	8,951	[%]		Pivot y:	0	[%]	
Cambrure f/c:	3,251	[%]	Rotation	i.	0	[*]	
Multiplier par:	100	[%]	Déplaceme	nt x:	0	[%]	
Corde du flap	kf/c: 25	[%]	Déplaceme	nt y:	0	[%]	
Déflection du flap	δ: 10	["]	Recopier	Efface	r Inverser y	Sm	nooth y 0,1
f/c = 3,25 % @	75,23 %	Pivot	- • • • • •			- e	(1/0) (0,996/-0,043)
Les changements d'I	paisseur et Cambrure	affecter	it seulement l'axe	e des Y.:			
			Annuler	NAC	A 0005 👻 Cor	iier (Texte	te)
rêt							

- \circ dans la fenêtre « Déflection du flap », entrer 10
- chaque clic sur le bouton augmente la déflection de 10°
- un clic sur « Anuler » permet de revenir un cran en arrière.

<u> Activité 03 : Étude de quelques profils sous Java Foil</u>

Nous allons utiliser le logiciel Java Foil pour comparer les performances de quelques profils. Afin de mener l'étude, référez-vous au document « Utiliser Java Foil ».

Nous allons étudier 5 profils :

- un profil symétrique, le NACA 0009 (profil NACA 4 chiffres)
 - épaisseur relative 09 %
 - cambrure f/c 0 %
 - $\circ~$ position de la cambrure xf/c 40 %
- un profil plan convexe NACA 138010 (profil NACA à 5 chiffres)
 - épaisseur relative 10 %
 - coefficient de portance Cz 2
 - position de la cambrure xf/c 40 %
- un profil à faible cambrure NACA 5410 (profil NACA à 4 chiffres)
 - épaisseur relative 10 %
 - cambrure f/c 5 %
 - $^\circ$ $\,$ position de la cambrure xf/c 40 % $\,$
- un profil cambré NACA 9410 (profil NACA à 4 chiffres)
 - épaisseur relative 10 %
 - cambrure f/c 9 %
 - $\circ~$ position de la cambrure xf/c 40 %
- un profil autostable, à double courbure, NACA 67110 (profil NACA à 5 chiffres aeac reflex)
 - épaisseur relative 10 %
 - coefficient de portance Cz 1
 - $^\circ$ $\,$ position de la cambrure xf/c 35 % $\,$

Remplissez le tableau suivant :

	NACA 0009	NACA 138010	NACA 5410	NACA 9410	NACA 67110
Cz max					
Incidence max					
Profil vitesses					

Quelles sont les différences entre ces profils ?

Reprenez le profil NACA 0009 et mettez-lui 10° de volet puis 20°, 30° et 40°. Remplissez le tableau cidessous et analysez les résultats :

	NACA 0009	NACA 0009 + 10° Flaps	NACA 0009 + 20° Flaps	NACA 0009 + 30° Flaps	NACA 0009 + 40° Flaps
Cz max					
Incidence max					
Profil vitesses					

Que penser de l'utilisation des volets ?

Petit regard sur la polaire de type EIFFEL :

1. Qu'est-ce qu'une polaire de type EIFFEL ? Que représente-t-elle ?

- 2. Comment obtient-on un point de cette courbe en pratique ?
- 3. A quelles incidences particulières les points représentés correspondent-ils ?

Petit regard sur la polaire des vitesses :

1. Qu'est-ce qu'une polaire des vitesses ? Que représente-t-elle ?

- 2. Comment obtient-on un point de cette courbe en pratique ?
- 3. A quelles incidences particulières les points représentés correspondent-ils ?

4. Que lest l'intérêt pratique de cette polaire ? Par qui est-elle très utilisée ?

Activité 04 : Comment améliorer les performances d'un profil ?

Nous allons faire des recherches pour trouver quels sont les dispositifs utilisés pour améliorer les performances d'un profil et d'une aile. Vous pouvez faire des recherches sur internet pour trouver les réponses aux questions et présenter des exemples illustrés.

- Qu'est-ce que l'allongement d'une aile ?
- Quels dispositifs utilise-t-on pour augmenter l'allongement sans augmenter l'envergure ?
- Qu'est-ce qu'un dispositif hypersustentateur ?
- Quels sont les dispositifs de bord de fuite existants ? Trouvez des exemples.

• Quels sont les dispositifs de bord d'attaque existants ? Trouvez des exemples.

• Comment peut-on contrôler la vitesse lorsqu'il faut ralentir ? Quels sont les dispositifs existants ? Trouvez des exemples.

Activité 05 : Qu'est-ce que la finesse d'un profil ?

- La finesse d'un profil (et par extension d'un aéronef complet) peut être définie de 4 manières équivalents. Quelles sont ces définitions ?
- Comment la finesse évolue-t-elle avec le poids d'un aéronef ? Comment les performances en sontelles modifiées ?

• Comment le vent influence-t-il la finesse ? Comment un pilote de vol à voile fait il évoluer sa vitesse en transition lorsqu'il y a du vent ?

Expérience n°10 : Influence du centrage sur la stabilité longitudinale

Expérience n°11 : Contrôle du tangage

Description de l'expérience (schémas et commentaires) :

Observations :

Analyse et conclusions :

Expérience n°12 : Contrôle du roulis

Description de l'expérience (schémas et commentaires) :

Observations :

Expérience n°13 : Contrôle du lacet

Description de l'expérience (schémas et commentaires) :

Observations :

Analyse et conclusions :

Activité 06 : Découverte des effets secondaires des commandes au simulateur

Nous allons utiliser un simulateur de vol à voile (Condor ou équivalent) pour découvrir les effets secondaires des commandes :

- Commande en tangage :
 - paramétrez le simulateur pour démarrer en vol à bord d'un planeur standard de 15m d'envergure.
 - Stabilisez le vol plané puis tirez légèrement, bien dans l'axe, sur le manche. Notez vos observations :
 - Stabilisez le vol plané puis poussez légèrement, bien dans l'axe, sur le manche. Notez vos observations :

- Commande en roulis :
 - paramétrez le simulateur pour démarrer en vol à bord d'un planeur standard de 15m d'envergure.
 - Stabilisez le vol plané puis inclinez légèrement le manche à droite, sans tirer ni pousser. Notez vos observations :

• Stabilisez le vol plané puis inclinez légèrement le manche à gauche, sans tirer ni pousser. Notez vos observations :

- Commande en lacet :
 - paramétrez le simulateur pour démarrer en vol à bord d'un planeur standard de 15m d'envergure.
 - Stabilisez le vol plané puis poussez légèrement, sans bouger le manche, le palonnier à droite. Notez vos observations :

Stabilisez le vol plané puis poussez légèrement, sans bouger le manche, le palonnier à gauche.
Notez vos observations :

Activité 07 : Vérification des études théoriques au simulateur

Nous allons utiliser un simulateur de vol comprenant une représentation des forces aérodynamique (X-Plane ou équivalent) pour contrôler l'évolution des forces aérodynamique lors des phases de vol.

- Pour cela paramétrez le simulateur pour faire un vol en PA38.
- Dans le menu « Special » d'X-Plane, paramétrez l'affichage des forces aérodynamiques.
- Observez l'avion depuis l'extérieur (Vue externe) et notez bien la répartition des forces aérodynamiques sur les surfaces portantes en palier.

- Entamez un virage et observez la modification des forces aérodynamiques.
- Revenez en palier puis changez le sens du virage et notez vos observations.
- Revenez en palier puis amorcez une montée stabilisée. Notez l'évolution des forces aérodynamiques.

• Revenez en palier puis amorcez une descente et notez vos observations.

Activité 08 : Construction d'une montgolfière

Pour vérifier le principe de la montgolfière nous allons en construire une en papier !

Avant la séance :

- Cherchez sur internet une méthode pour fabriquer une petite montgolfière.
- Faîtes la liste du matériel nécessaire pour la réaliser et communiquez là au professeur

En séance :

- Fabriquez la montgolfière.
- Testez là.
- Notez vos observations.

Activité 09 : Simuler un vol spatial

A l'aide du simulateur de vol spatial « Orbiter », nous allons simuler la mise en orbite de la navette Atlantis... Let's go to the Moon !

Lancez le simulateur de vol spatial Orbiter et sélectionnez la démonstration Atlantis.

A l'aide de la touche F1 vous pouvez changer entre la vue extérieure et le HUD avec les écrans de navigation. Vous pouvez également afficher la carte pour voir la position de la navete par rapport à la planète.

Lancez la simulation et observez les phases de vol. Remarquez la trajectoire de l'orbite prévue qui s'affiche dans l'écran de droite.